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|
A Prologue: Mostly Historical

1 From the Linear to the Bilinear

At the start and at the very foundation, there is the Riesz representation
theorem. In original form it is

Theorem 1 (F. Riesz, 1909). Fvery bounded, real-valued linear func-
tional a on C([a,b]) can be represented by a real-valued function g of
bounded variation on [a,b], such that

b
a(f)= [ fdg.  feca), (11)
where the integral in (1.1) is a Riemann—Stieltjes integral.
The measure-theoretic version, headlined also the Riesz representation

theorem, effectively marks the beginning of functional analysis. In gen-
eral form, it is

Theorem 2 Let X be a locally compact Hausdorff space. Every bounded,

real-valued linear functional on Co(X) can be represented by a regular
Borel measure v on X, such that

olf)= [ Fdn fecu). (1.2)

And in its most primal form, measure-theoretic (and non-trivial!) details
aside, the theorem is simply
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Theorem 3 If « is a real-valued, bounded linear functional on co(N) =
Co, then

lafh =) la(n)] < oo, (1.3)
and
a(f) = a(n)f(n), [ € co,
where &(n) = a(e,) (en(n) =1, and e,(§) =0 for j #n).

The proof of Theorem 3 is merely an observation, which we state in
terms of the Rademacher functions.

Definition 4 A Rademacher system indexed by a set F is the collection
{r, : x € E} of functions defined on {—1,1}¥, such that for z € E

re(w) =w(x), we{-1,1}F. (1.4)

To obtain the first line in (1.3), note that

N
sup { Z a(n) ry,

and to obtain the second, use the fact that finitely supported functions
on N are norm-dense in co(N).

PN e N} = [lalx, (1.5)

Soon after F. Riesz had established his characterization of bounded
linear functionals, M. Fréchet succeeded in obtaining an analogous char-
acterization in the bilinear case. (Fréchet announced the result in 1910,
and published the details in 1915 [Fr]; Riesz’s theorem had appeared in
1909 [Ri¢1].) The novel feature in Fréchet’s characterization was a two-
dimensional extension of the total variation in the sense of Vitali. To
wit, if f is a real-valued function on [a, b] X [a, b], then the total variation
of f can be expressed as

sup {

A< <y << b,

> A2 f(@n, Ym) Tom

n,m

o0

a<~-~<ym<--~<b}, (1.6)
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where A? is the ‘second difference’,

AQf(Inaym)
= f($n7ym) - f(an,ym) + f(an,qu) - f(xnaymfl)a (17)

and {rpm, : (n,m) € N’} is the Rademacher system indexed by NZ
The two-dimensional extension of this one-dimensional measurement is
given by:

Definition 5 The Fréchet variation of a real-valued function f on
[a,b] X [a,b] is

ZAZJC(%;ym)TnQ@Tm A< <oy < - < by

n,m

£l = sup{

oo

<~~~<ym<~~~<b}. (1.8)

(7p @ T, is defined on {1, 1} x {1, 1} by
Tn @ T (W1, wa) = wi(n)ws(m),
and || - [|oo is the supremum over {—1, 1} x {—1,1}1)
Based on (1.8), the bilinear analog of Riesz’s theorem is

Theorem 6 (Fréchet, 1915). A real-valued bilinear functional 5 on
C([a,b]) is bounded if and only if there is a real-valued function h on
[a, b] x [a,b] with |h||F, < oo, and

b b
ﬁ(f,m://f@gdm fec(a), geClat),  (19)

where the right side of (1.9) is an iterated Riemann—Stieltjes integral.

The crux of Fréchet’s proof was a construction of the integral in (1.9),
a non-trivial task at the start of the twentieth century when integration
theories had just begun developing.

Like Riesz’s theorem, Fréchet’s theorem can also be naturally recast
in the setting of locally compact Hausdorff spaces; we shall come to this
in good time. At this juncture we will prove only its primal version.
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Theorem 7 If 3 is a bounded bilinear functional on co, and B(en,, e,) =
B(m,n), then

sup{

= 1Bl < oo (1.10)

Z B(m,n) T @ Ty,

meS,neT

: finite sets S C N,T C N}

o0

and

B(f9)

I I
2 18
N/
gE 8
E> E>
3 3
S S
=
3 S
q/ N———
o =
= 2

f €co, g€ co. (1.11)

Conversely, if 3 is a real-valued function on N xN such that ||| r, < oo,
then (1.11) defines a bounded bilinear functional on cq.

The key to Theorem 7 is

Lemma 8 If 3= (3(m,n) : (m,n) € N?) is a scalar array, then

||/BHF2 = SUP{ Z B(m,n) Ty Yn| : Tm € [=1,1],
meS,neT
yn € [=1,1], finite sets S C N,T C N}. (1.12)

Proof: The right side obviously bounds ||3]|z,. To establish the reverse
inequality, suppose S and T are finite subsets of N, and w € {—1,1}".
Then

”B”Fg 2 Z B(mvn) T'm @ Tn )
neT ,mesS oo
> Z Z B(m,n) Tm(w)|. (1.13)

neT |mes
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If y, € [-1,1] for n € T, then the right side of (1.13) bounds
5 (z Bm.m) rmw)) =3 (z Bmm) y> )
neT \meS meS \neT
(1.14)

By maximizing the right side of (1.14) over w € {—1,1}", we conclude
that ||8||r, bounds

(1.15)

2.

mesS

> B(m,n) yal.

neT

If 2, € [-1,1] for m € S, then (1.15) bounds

Z (Z ﬁ(m,n) yn> T
meS \neT

Z B(m,n) Tm Yn

meS,neT

, (1.16)

which implies that || 3|z, bounds the right side of (1.12). O

Proof of Theorem 7: If 3 is a bilinear functional on cg, with norm
18I == sup{|B8(f,9)| : f € Bey, g € Be,}, then (because finitely sup-
ported functions are norm-dense in cg)

18Il = Sup{

yn € [—1,1], finite sets S C N, T C N},

D € [-1,1],

Z B(m,n) Tm Yn

meS,neT

and Lemma 8 implies (1.10).

Let fecoand geco. If NeN, thenlet fy=f1;n) and gn=g1;y]. (Here
and throughout, [N] ={1,...,N}.) Because fy — f and gy — g as
N — oo (convergence in ¢g), and § is continuous in each coordinate, we
obtain B(fx,g) — B(f,g) and B(f,gn) — B(f,g) as N — oo, and then
obtain (1.11) by noting that 3(fx,gn) = SN_ 2N B(m, n)g(n) f(m).

Conversely, if B is a scalar array on N x N, and f and g are finitely
supported real-valued functions on N, then define

8(.9) = 323 Blm,n)g(n) f(m). (1.17)
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By Lemma 8 and the assumption ||3||m, < oo, 8 is a bounded bilinear
functional on a dense subspace of ¢y, and therefore determines a bounded
bilinear functional on c¢g. The first part of the theorem implies (1.10)
and (1.11).

Theorem 7 was elementary, basic, and straightforward — view it as a
warm-up. In passing, observe that whereas every bounded linear func-
tional on ¢y obviously extends to a bounded linear functional on [*°, the
analogous fact in two dimensions, that every bounded bilinear functional
on ¢g extends to a bounded bilinear functional [*° is also elementary, but
not quite as easy to verify. This ‘two-dimensional’ fact, specifically that
(1.11) extends to f and g in [°°, will be verified in a later chapter.

2 A Bilinear Theory

Notably, Fréchet did not consider in his 1915 paper the question whether
there exist functions with bounded variation in his sense, but with infi-
nite total variation in the sense of Vitali. Whether bilinear functionals
on C([a,b]) can be distinguished from linear functionals on C([a,b]?) is
indeed a basic and important issue (Exercises 1, 2, 4, 8). So far as I
can determine, Fréchet never considered or raised it (at least, not in
print). Be that as it may, this question led directly to the next advance.

Littlewood began his classic 1930 paper [Lit4] thus: ‘Professor
P.J. Daniell recently asked me if I could find an example of a function
of two variables, of bounded variation according to a certain definition
of Fréchet, but not according to the usual definition.” Noting that the
problem was equivalent to finding real-valued arrays

B = (B(m,n) : (m,n) € N?)

with ||8]|r, < oo and [|B]1 = ZmnlB(m,n)| = oo, Littlewood settled
the problem by a quick use of the Hilbert inequality (Exercise 1). He
then considered this question: whereas there are 3 with ||3]|m, < oo
and ||3]; = oo, and (at the other end) ||3||r, < oo implies ||3]2 < oo
(Exercise 3), are there p € (1,2) such that

1Bl 7, < 00 = [|Bllp < o0?
Littlewood gave this precise answer.

Theorem 9 (the 4/3 inequality, 1930).

ol i

18]l, < oo for all B with ||B||r, < oo if and only if p>
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To establish ‘sufficiency’, that ||3||m, < oo implies ||B|\4/3 < 00,
Littlewood proved and used the following:

Theorem 10 (the mixed (I!,/?)-norm inequality, 1930). For all
real-valued arrays 3 = (3(m,n) : (m,n) € N?),

Z(ZIB(W,H)IZ’) < KB r, (2.1)

where k > 0 1s a universal constant.

This mixed-norm inequality, which was at the heart of Littlewood’s
argument, turned out to be a precursor (if not a catalyst) to a sub-
sequent, more general inequality of Grothendieck. We shall come to
Grothendieck’s inequality in a little while.

To prove ‘necessity’, that there exists 3 with ||, < co and

18]I, = oo for all p < 4/3,

Littlewood used the finite Fourier transform. (You are asked to work
this out in Exercise 4, which, like Exercise 1, illustrates first steps in
harmonic analysis.)

Besides motivating the inequalities we have just seen, Fréchet’s 1915
paper led also to studies of ‘bilinear integration’, first by Clarkson and
Adams in the mid-1930s (e.g., [Cl1A]), and then by Morse and Transue in
the late 1940s through the mid-1950s (e.g., [Mor]). For their part, firmly
believing that the two-dimensional framework was interesting, challeng-
ing, and important, Morse and Transue launched extensive investiga-
tions of what they dubbed bimeasures: bounded bilinear functionals on
Co(X)xCp(Y), where X and Y are locally compact Hausdorff spaces. In
this book, we take a somewhat more general point of view:

Definition 11 Let X and Y be sets, and let C C 2% and D C 2Y
be algebras of subsets of X and Y, respectively. A scalar-valued set-
function 4 on C x D is an Fy-measure if for each A € C, u(A4,-) is
a scalar measure on (Y, D), and for each B € D, u(-,B) is a scalar
measure on (X, C').

That bimeasures are Fr-measures is the two-dimensional extension of
Theorem 2. (The utility of the more general definition is illustrated in
Exercise 8.)

When highlighting the existence of ‘true’ bounded bilinear functionals,
Morse and Transue all but ignored Littlewood’s prior work. In their first
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paper on the subject, underscoring ‘the difficult problem which Clarkson
and Adams solve ...’ they stated [MorTrl, p. 155]: ‘That [the Fréchet
variation] can be finite while the classical total variation ...of Vitali is
infinite has been shown by example by Clarkson and Adams [in [CIA]].’
(In their 1933 paper [ClA], the authors did, in passing, attribute to
Littlewood the first such example [CIA, p. 827], and then proceeded to
give their own [ClA, pp. 837—41]. I prefer Littlewood’s simpler example,
which turned out to be more illuminating.) The more significant miss
by Morse and Transue was a fundamental inequality that would play
prominently in the bilinear theory — the same inequality that had been
foreshadowed by Littlewood’s earlier results.

3 More of the Bilinear

The inequality missed by Morse and Transue first appeared in
Grothendieck’s 1956 work [Gro2], a major milestone that was missed by
most. The paper, pioneering new tensor-theoretic technology, was diffi-
cult to read and was hampered by limited circulation. (It was published
in a journal carried by only a few university libraries.) The inequal-
ity itself, the highlight of Grothendieck’s 1956 paper, was eventually
unearthed a decade or so later. Recast and reformulated in a Banach
space setting, this inequality became the focal point in a seminal 1968
paper by Lindenstrauss and Pelczynski [LiPe]. The impact of this 1968
work was decisive. Since then, the inequality, which Grothendieck him-
self billed as the ‘théoreme fondamental de la théorie metrique des pro-
duits tensoriels’ has been reinterpreted and broadly applied in various
contexts of analysis. It has indeed become recognized as a fundamental
cornerstone.

Theorem 12 (the Grothendieck inequality). If 3 = (3(m,n) :
(m,n) € N?) is a real-valued array, and {x,} and {y,} are finite subsets
in B2, then

> By n)(xm,ya)| < ke 18] 3.1

n,m

where By is the closed unit ball in 12, {-,-) denotes the usual inner product
in 12, and kg > 1 is a universal constant.
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Restated (via Lemma 8), the inequality in (3.1) has a certain aesthetic
appeal:

sup {

Ixmll2 <1, |lynlle <1, finite SCN, T C N}

cXm €12, yn €12,

S Blmn) (s yn)

meS,neT

< Kg sup { Z B(mvn)xmyn tTm € R,
meS,neT
Yn ER, |xm| <1, |yn| <1, finite SCN, T C N}. (3.2)

So stated, the inequality says that products of scalars on the right side of
(3.2) can be replaced, up to a universal constant, by the dot product in a
Hilbert space. In this light, a question arises whether one can replace the
dot product on the left side of (3.1) with, say, the dual action between
vectors in the unit balls of I? and 19,1/p+1/qg =1 and p € [1,2). The
answer is no (Exercise 6).

Grothendieck did not explicitly write what had led him to his ‘théo-
réme fondamental’;, but did remark [Gro2, p. 66] that Littlewood’s
mixed-norm inequality (Theorem 10) was an instance of it (Exercise 5).
The actual motivation not withstanding, the historical connections
between Grothendieck’s inequality, Morse’s and Transue’s bimeasures,
Littlewood’s inequality(ies), and Fréchet’s 1915 work are apparent in
this important consequence of Theorem 12.

Theorem 13 (the Grothendieck factorization theorem). Let X be
a locally compact Hausdorff space. If 8 is a bounded bilinear functional
on Co(X) (a bimeasure on X x X ), then there exist probability measures
v1 and vy on the Borel field of X such that for all f € Co(X), g € Co(X),

1B(f, 9)| < wallBINfll2 @ llgllz ) (3.3)

where kg > 0 is a universal constant, and

181l = sup{|B(f, 9)| : (f,9) € Bey(x) X Beo(x)}-

This ‘factorization theorem’, which can be viewed as a two-dimensional
surrogate for the ‘one-dimensional’ Radon—-Nikodym theorem, has a far-
reaching impact. A case for it will be duly made in this book.
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4 From Bilinear to Multilinear and Fraction-linear

Up to this point we have focused on the bilinear theory. As our story
unfolds in chapters to come, we will consider questions about extend-
ing ‘one-dimensional’ and ‘two-dimensional’ notions to other dimensions:
higher as well as fractional. Some answers will be predictable and obvi-
ous, but some will reveal surprises. In this final section of the prologue,
we briefly sketch the backdrop and preview some of what lies ahead.

The multilinear Fréchet theorem in its simplest guise is a straight-
forward extension of Theorem 7:

Theorem 14 An n-linear functional 8 on cqg is bounded if and only if
18], < oo, where B(k1,...,kn) = (€. ek,) and

Z B(kl,...,kin)ﬁm@"'@rkn

k1€Tr,....kn €Ty

1811k, = Sup{

finite sets Ty CN,..., T, C N}. (4.1)

Moreover, the n-linear action of B on cq is given by

Bftynfn) = - (Zﬁkl,..., fn(n)>~--f1<k1),

k1
(fl,-.-,fn)ECOX"'XCO. (42)

Though predictable, the analogous general measure-theoretic version
requires a small effort. (The proof is by induction.)

The extension of Littlewood’s 4/3-inequality to higher (integer)
dimensions is not altogether obvious. (So far that I know, Littlewood
himself never addressed the issue.) This extension, needed in a harmonic-
analytic context, was stated and first proved by G. Johnson and
G. Woodward in [JWo:

Theorem 15
181l

2n
d onl >
if and only if p > I

‘One half’ of this theorem could be found also in [Da, p. 33]. For his
purpose in [Da], Davie called on Littlewood’s mixed-norm inequality
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(Theorem 10), but did not need the 4/3-inequality. Nevertheless, he
stated the latter, and remarked in passing without supplying proof that
‘it [was] not hard to extend Littlewood’s result’ to obtain

5 N1 n41 s
1Bll2n/(n+1) <372 n 2 ||B|F, - (4.3)

(Davie did not state that (4.3) was optimal.)

Davie’s paper is interesting in our context not only for its connec-
tion with Littlewood’s inequalities, but also for a discussion therein of a
seemingly unrelated, then-open question concerning multidimensional
extensions of the von-Neumann inequality. This particular question
was subsequently answered in the negative by N. Varopoulos, who, en
route, demonstrated that there was no general trilinear Grothendieck-
type inequality. The latter result concerning feasibility of Grothendieck-
type inequalities in higher dimensions is a crucial part of our story
here, indeed leading back to questions about extensions of Littlewood’s
4/3-inequality. I will not dwell here or anywhere else in the book on
the original problem concerning the von-Neumann inequality. But I
shall state here the question, not only for its role as a catalyst, but also
because an interesting related problem remains open. It is worth a small
detour.

The von-Neumann inequality asserts that if 7" is a contraction on a
Hilbert space and p is a complex polynomial in one variable, then

[p(T)| < [lpllo := sup{[p(2)] : |2] < 1}, (4.4)

where ||-|| above denotes the operator norm. The two-dimensional exten-
sion of (4.4) asserts that if 77 and T are commuting contractions on a
Hilbert space, and p is a complex polynomial in two variables, then

Ip(Th, T2) || < [[plloc == supflp(z1, 22)] < |21 < 1, ]z2| <1} (4.5)

(These inequalities can be found in [NF, Chapter 1].) The question
whether

Ip(T1, -, Tl < [Plloes

where n > 3, T1,...,T, are commuting contractions on a Hilbert space,
and p is a complex polynomial in n variables, was resolved in the negative
in [V4]. But a question remains open: for integers n > 3, are there
K,, > 0 such that if Ty, ...,T,, are commuting contractions on a Hilbert
space, and p is a complex polynomial in n variables, then

Ip(Th, ..., )|l < Kallplloc? (4.6)
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Let us return to the general 2n/n+ 1-inequality in Theorem 15. The
arguments used to prove Littlewood’s inequality(ies) start from the
observation that Rademacher functions are independent in the basic
sense manifested by (1.5). The analogous observation in a Fourier-
analysis setting is that the lacunary exponentials {e®”*: m € N} on
[0,27) := T are independent in a like sense. Specifically, if ¥,,a(m) e ®
is the Fourier series of a continuous function on T, then ¥, |&(m)| < oo
(cf. (1.5)). This phenomenon had been noted first by S. Sidon in 1926
[Sil], and later gave rise to a general concept whose systematic study
was begun by Walter Rudin in his classic 1960 paper [RU1]:

Definition 16 F C Z is a Sidon set if
feCr(T) = fel'(F), (4.7)

where Cp(T) :={f € C(T): f(m) =0 for m ¢ F}.

Note that the counterpoint to Sidon’s theorem (asserting that {3* :
k € N} is a Sidon set) is that Placherel’s theorem is otherwise optimal;
that is,

fel?(z) for all f e C(T)<p>2. (4.8)
These two ‘extremal’ properties — Sidon’s theorem at one end, and (4.8)

at the other — lead naturally to a question: for arbitrary p € (1,2), are
there F' C Z such that

feld(F) for all f € Cp(T) < q> p? (4.9)
To make matters concise, we define the Sidon exponent of F C Z by
op =inf{p: ||f||l, < oo for all f € Cp(T)}. (4.10)

(Two situations could arise: either ||f|,, < oo for all f € Cg(T), or
there exists f € Cp(T) with ||f|,, = co. Later in the book we will
distinguish between these two scenarios.) Let E = {3¥ : k € N}, and
define for integers, n > 1

E,={+3" 4+ ... £33 . (k,... k,) € N"}. (4.11)
Transported to a context of Fourier analysis, Theorem 15 implies
" 2
feli(E,) for all f€Cpg, (T) s q> % (4.12)
n

In particular,

1
UEn:2/(1+n>, n €N, (4.13)
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which leads to the p-Sidon set problem (see (4.9)): for arbitrary p €
(1,2), are there F C Z such that op = p? The resolution of this
problem — it so turned out — followed a resolution of a seemingly unre-
lated problem, that of extending the Grothendieck inequality to higher
dimensions.

The Grothendieck inequality (Theorem 12) is a general assertion about
bounded bilinear forms on a Hilbert space: in Theorem 12, replace {2
by a Hilbert space H, and the inner product (-,-) in /2 by a bounded
bilinear form on H. A question arises: is there K > 0 such that for all
bounded trilinear functionals 3 on cg, all bounded trilinear forms A on
a Hilbert space H, and all finite subsets {x,,} C By, {yn} C By, and
{Zn} C By,

> Blm,n, k) A(xk, Y, 20)| < K| 5, ? (4.14)

k,nm

(Here and throughout, By denotes the closed unit ball of a normed linear
space X.) The question was answered in the negative by Varopoulos
[V4], who demonstrated the following. For H = [2(N?), and ¢ € [°°(N?),
define

Ay(x,y,2) = Z o(k,m,n) x(k,m) y(m,n) z(k,n),

k.mmn
(x,y,2z) € 2(N?) x I(N?) x [?(N?), (4.15)

which, by Cauchy—Schwarz, is a bounded trilinear form on H with norm
llloo- By use of probabilistic estimates, Varopoulos proved the exis-
tence of ¢ for which there was no K > 0 such that (4.14) would hold
with A = A, and all bounded trilinear functionals 8 on co. But a ques-
tion remained: were there any ¢ € 1°°(N?) for which A, would satisfy
(4.14) for all bounded trilinear functionals 8 on cg?

In 1976 I gave a new proof of the Grothendieck inequality [Bl3]. The
proof, cast in a harmonic-analysis framework, was extendible to multi-
dimensional settings, and led eventually to characterizations of projec-
tively bounded forms [Bl4]. (Projectively bounded forms are those that
satisfy Grothendieck-type inequalities, as in (4.14).) We illustrate this
characterization in the case of the trilinear forms in (4.15). Choose and
fix an arbitrary two-dimensional enumeration of E = {3* : k € N}, say
E = {mi; : (i,j) € N’} (any enumeration will do), and consider

E? = {(maj, mjr,ma) : (i,4,k) € N°}. (4.16)
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‘We then have

Theorem 17 For ¢ € [°(N%), the trilinear form A, is projectively
bounded if and only if there exists a reqular Borel measure p on T? such
that

ﬂ(mijamjk’mik) = @(%]a k)v (Z.ajv k) € Ng' (417)

Therefore, the question whether there exist ¢ such that A, is not pro-
jectively bounded becomes the question: is E3/2 a Sidon set in Z3? The
answer is no.

In the course of verifying that F % is not a Sidon set, certain combi-
natorial features of it come to light, suggesting that E3/2 is a ‘3/2-fold’
Cartesian product of E. Indeed, following this cue, we arrive at a
6/5-inequality [BI5], which, in effect, is a ‘3/2-linear’ extension of the
Littlewood (bilinear) 4/3-inequality. For a scalar 3-array 3 = (6(i, j, k) :
(1,5, k) € N*), define (the ‘3/2-linear’ version of the Fréchet variation)

HBHFg/z = Sup{ Z B(i,§, k) 1ij @ Tk @ i
i1€S,jeT k€U oo
finite setsSCN,TCNUCN}. (4.18)

(Rademacher systems in (4.18) are indexed by N2.) The 6/5-inequality is

Theorem 18
||B||p < 0o for all 3-arrays B with ||ﬁAHF3/2 < 00
if and only if p > 6/5.
Transporting this inequality to a setting of Fourier analysis, we let
Eyjo = {& myj £ my, £ma : (i, 5, k) € N*}, (4.19)

where {m;;: (i,j) € N?} is an enumeration of {e2m3"t: | ¢ N}, and
obtain that

OBy = g = 2/ (1 + 1/ (2)) (cf. (4.12)). (4.20)

The assertion in (4.20) is a precise link between the harmonic-analytic
index op, ,, and the ‘dimension’ 3 /2, a purely combinatorial index. This
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link naturally suggests a formula relating the harmonic-analytic index
of a general ‘fractional Cartesian product’ to its underlying dimension,
and thus the solution of the p-Sidon set problem. This (and much more)
will be detailed in good time. The prologue is over. Let us begin.

Exercises

1. i. (The Hilbert inequality). Prove that if (a,,) € B2 and (b,) € B2
are finitely supported sequences, then

Z apbm/(m—n)| < K,

m¥#n

where K is a universal constant.

ii. Applying the Hilbert inequality, reproduce Littlewood’s proof
of the assertion (on p. 164 of [Li]) that there exist 3 = (3(m,n) :
(m,n) € Z*) such that ||3||r, < oo but ||3]; = cc.

iii. Compute the infimum of the ps such that HBHP < o0, where f3
is the array obtained in ii.

2. Here are two other proofs, using probability theory, that there exist
arrays 3 = (8(m,n) : (m,n) € N?) with ||8]|p, < co and ||3]|1 = occ.
i. (a) Let {X,, : n € N} be a system of statistically independent

standard normal variables on a probability space (X,2,P).
Show that for every positive integer N, there exists a
finite partition {A,, : m =1,...,2V} of (X,2l) such that if
BN(mm) = %ElAan forn=1,..., Nandm=1,...,2",
and fy(m,n) = 0 for all other (n,m) € N? (E denotes
expectation, and 1 denotes an indicator function), then

B p, < D and |y > D log N,

where D > 0 is an absolute constant.

(b) Use (a) to produce 8= (B(m,n): (m,n) e N?) such that
18]l 7, < oo but ||3]y = oo (cf. Exercise 4 iv below). What
can be said about |||, for p > 17

ii. (a) For each N > 0, define
Bn(w,n) =rp(w)/N22N, we {~1,1}N, ne[N].

Prove that ||Gy|r, < 1. Compute |||, for p > 1.
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(b) Use (a) to produce 8 = (3(m,n): (m,n) € N?) such that
18], < 00, [|B]ly = o0, and |||, < oo for all p > 1.

(Do you see similarities between the constructions in Parts i and
ii? Do you see a similarity between the construction in Part ii and
Exercise 4 below?)

3. Verify that if 8 = (8(m,n) : (m,n) € N?) is a scalar array then

1Bll2 < 18] r,-
4. For N € N, let Zy = [N] (a compact Abelian group with addition

modulo N). Consider the characters
Xn(k) = 2™ F/N e Zn, k€ Ly,
and the Haar measure
1
kY =—, kelZy.
V{ } N7 6 N
For f € [°°(Zy), define the transform of f by

fn) =" f(k)xa(k) v(k).

k€EZN

i. (Orthogonality of characters) For m € Zy and n € Zy, prove

> xm(k) xn (k) v(k) = {1 if m=n

keZu 0 otherwise.

ii. (Inversion formula, Parseval’s formula, Plancherel’s theorem)
Prove that for f € {*°(Zy),

fn) =3 J(k) xu(n), né€Zy.
kEZN
Conclude that if f € I°°(Zy) and g € [*°(ZnN), then
Y fk) g(k) vik) =D f(k) (k).
keZy k€L

and that if f € L?(Zy,v), then

12 @y = 12z -

Q2mi(mn/N)

iii. Prove that the 2-array (T : (m,n) € Zn xZy) represents
an isometry of [2(Zy). Define

27i(mn/N) .
B(m,n)z{cwsm if (m,n) € Zy X Zn
0 otherwise,

and verify that ||3]|p, < 1.
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iv. Prove there exists a scalar array § with [|3]|r, < oo and
18]l = oo for all p < 4/3.

5. Prove that Littlewood’s mixed norm inequality (Theorem 10) is an
instance of the Grothendieck inequality (Theorem 12).
6. Let 5 be the scalar array defined in Exercise 4 iii. Let ¢ € (2,00)
and evaluate
sup{

Yn € Bja, finite sets S C N, T C N}.

Z B(m7n)<emayn> :

meS,neT

What does your computation say about an extension of Littlewood’s
mixed norm inequality (Theorem 10)? In particular, prove that
the inner product in Grothendieck’s inequality cannot be replaced
by the dual action between vectors in the unit balls of [P and [9,
1/p+1/¢=1and p € l,2).

7. Prove that 3 is a bounded n-linear functional on cq if and only if

> Bl ko )el® e
k1, skn

represents a continuous function on T".

8. This exercise, providing yet another example of a function with
bounded Fréchet variation and infinite total variation, is a prelude
to the ‘probabilistic’ portion of the book.

A stochastic process W = {W(¢) : t € [0,00)} defined on a
probability space (2,2, P) is a Wiener process if it satisfies these
properties:

(a) for 0 < s <t < 00, W(t) — W(s) is a normal r.v. with mean
zero and variance t — s;

(b) for 0 <tg <ty <ty < oo, W(tk)—W(tk_1), k=1,...,m,
are independent.

Let J denote the algebra generated by the intervals
{(s,t] : 0< s <t <1},

and let pyw be the set-function on A x {(s,t] : 0 < s < t < 1} defined
by

uw(A, (5,8]) =E14(W(#) — W(s)), AeA, 0<s<t<I.
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i. Extend puw by additivity to A x J.

ii. Prove that pw is an Fh-measure on 2 x J which is uniquely
extendible to an Fh-measure on 2 x B, where B is the Borel
field in [0,1].

iii. Prove that pw cannot be extended to a measure on the
o-algebra generated by 2 x B.

Hints for Exercises in Chapter I

i. Here is an outline of a proof using elementary Fourier analysis.
First, compute the Fourier coefficients of h(xz) = z on T. Let f(x) =
Enf(n) e" and g(z) = £,§(n) e™* be trigonometric polynomials,
and observe that

/T 2 (@)g(x)de

< 7l fllzellglle

= <Z If(n)2>% (Zﬂ: Iﬁ(n)|2> 2

To prove the Hilbert inequality, use spectral analysis of fg, and
apply Parseval’s formula to the integral on the left side.

ii. Littlewood let a, = b, = 1/y/|n|(log|n|)* for n € N, where
1/2 < o < 1, and then defined 3(m,n) = anby/(m—n) for n # m.

. For N > 0, consider E; = {X; >0}, i€[N], and then for s =

(515---,8n) € {=1,1}, let

A, =E"NE?...NE}F,
where E' = E; if s; =1, and E]" = (E;)° if s; = —1.
Cf. Plancherel’s theorem.

This exercise involves basic notions that are covered at length in
Chapter VII.

. See Remark iv in Chapter VI § 2.





